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Abstract. Together with its ligand, stem cell factor, the
receptor tyrosine kinase c-Kit is a key controlling recep-
tor for a number of cell types, including hematopoietic
stem cells, mast cells, melanocytes and germ cells. Gain-
of-function mutations in c-Kit have been described in a
number of human cancers, including testicular germino-
mas, acute myeloid leukemia and gastrointestinal stromal
tumors. 
Stimulation of c-Kit by its ligand leads to dimerization of
receptors, activation of its intrinsic tyrosine kinase activ-
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ity and phosphorylation of key tyrosine residues within
the receptor. These phosphorylated tyrosine residues
serve as docking sites for a number of signal transduction
molecules containing Src homology 2 domains, which
will thereby be recruited to the receptor and activated
many times through phosphorylation by the receptor.
This review discusses our current knowledge of signal
transduction molecules and signal transduction pathways
activated by c-Kit and how their activation can be con-
nected to the physiological outcome of c-Kit signaling. 
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c-Kit and SCF

The viral oncogene v-Kit was identified in 1986 as the
transforming gene of the Hardy-Zuckerman 4 feline sar-
coma virus [1], and shortly thereafter its cellular homolog,
c-Kit, was cloned and sequenced [2]. A few years later, it
was found that c-Kit is allelic with the dominant white
spotting (W) of mice [3, 4]. A number of naturally occur-
ring loss-of-function mutations in c-Kit have been found
in both mice and humans. Complete loss of c-Kit expres-
sion leads to death in utero or perinatally, most likely due
to severe anemia. Heterozygous animals display defects in
pigmentation, reduced fertility and anemia. It has been
found that the severity of the phenotype correlates in-
versely with the tyrosine kinase activity of the receptor.
Mutations in the so-called Steel (Sl) locus in mice give rise
to a phenotype very similar to mutations in c-Kit, and it
was demonstrated that the product of the Steel locus was
identical to stem cell factor (SCF), the ligand for c-Kit [5,
6]. For a review on W and Sl mutations, see [7].

c-Kit alternative splicing

As a result of alternative messenger RNA (mRNA) splic-
ing, four isoforms of c-Kit have been identified in hu-
mans and two in mice. In both mice and humans alterna-
tive splicing results in isoforms characterized by the pres-
ence or absence of a tetrapeptide sequence (GNNK) in
the extracellular part of the juxtamembrane region [8, 9],
and occurs due to alternate use of 5¢ splice donor sites
[10]. Additionally, splice variants exist that differ in the
presence or absence of a single serine residue in the ki-
nase insert region of human c-Kit, due to alternative
splice acceptor site usage [9]. Furthermore, a shorter
transcript of c-Kit is expressed in postmeiotic germ cells
of the testis. This encodes a truncated version of c-Kit (tr-
kit) consisting only of the second part of the kinase do-
main, thus lacking the extracellular and transmembrane
domains as well as the first part of the kinase domain
[11]. This isoform therefore lacks functional kinase ac-
tivity. However, despite this fact, it is able to signal. Mi-



croinjection of tr-kit into mouse eggs triggers metaphase-
to-anaphase  transition by the sequential activation of 
the Src family kinase (SFK) Fyn and phospholipase C-g1
(PLC-g1), and their association with Sam68 [12].
Variants GNNK+ and GNNK– (also denoted Kit and
KitA, respectively) are co-expressed in most tissues [8,
9], with the GNNK– form predominating. Expression of
the two isoforms has been studied in human acute
myeloid leukemia (AML). It was shown that among vari-
ous AML cell lines the ratio of the two isoforms varied
from as low as 1.3 to as high as 12 [13]. In contrast, the
ratio in normal bone marrow was around 4.4–5.5. How-
ever, no relation was found between the expression of ei-
ther isoform and the response to therapy or other clinical
parameters [13]. However, NIH3T3 cells expressing ei-
ther isoform have been shown to differ in their trans-
forming activity [14]. In the presence of the ligand SCF,
the GNNK– form induced anchorage-independent
growth, loss of contact inhibition and tumorigenicity.
However, no difference in ligand affinity was observed
between the two isoforms. It was further demonstrated
that upon ligand stimulation, the GNNK– isoform was
more highly tyrosine phosphorylated and more rapidly
internalized, and it activated extracellular regulated ki-
nase (Erk) more strongly than the GNNK+ isoform. In a
recent study, Voytyuk et al. [15] showed that the kinetics
of phosphorylation of the adapter protein ShcA, previ-
ously demonstrated to be phosphorylated by SFKs down-
stream of c-Kit, was stronger and more rapid in the
GNNK– form. Inhibition of SFKs by treatment with the
selective inhibitor SU6656 altered the kinetics of activa-
tion of the GNNK– form of c-Kit so that they resembled
those of the GNNK+ form. Thus, a very minute differ-
ence in amino acid sequence in a region with no enzy-
matic function or substrate binding appears to lead to dra-
matic differences in signaling.

c-Kit and disease

Abnormal expression or function of c-Kit is found in sev-
eral human diseases. Loss-of-function mutations in c-Kit
are found in the rare disorder piebaldism. These muta-
tions lead to deafness, megacolon and defective pigmen-
tation of the hair and skin (for review, see [7]). 
c-Kit has been implicated in a number of cancer forms in
humans. In a number of tumor types, autocrine loops
have been found, i.e. the tumors produce both SCF and c-
Kit, leading to autonomous stimulation. These include
small cell lung carcinomas, colorectal carcinoma, breast
carcinoma, gynecological tumors and neuroblastomas
[16–19]. 
Interestingly, loss of expression of c-Kit has also been as-
sociated with some tumor forms, such as in thyroid can-
cer [20], melanoma [21] and breast cancer [22]. Loss of
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c-Kit expression was found to be related to malignant
transformation in the female breast, but not in the male
breast [23]. 
Gain-of function mutations in c-Kit are found in a num-
ber of cancers, including mast cell leukemia, mastocyto-
sis [24, 25], acute myeloid leukemia [26], germ cell tu-
mors [27] and gastrointestinal stromal tumors (GISTs)
[28]. Interestingly, in most tumor types the activating mu-
tation resides close to the activation loop, at D816, in the
second part of the kinase domain of c-Kit, while in GIST
the activating mutations are either deletions or insertions
in the juxtamembrane region of c-Kit.

Signal transduction through c-Kit

Signaling downstream of c-Kit has been studied exten-
sively in a variety of cell systems. Mast cells are one of
the cell types most commonly used to study c-Kit signal-
ing. A number of studies have also used transient trans-
fection systems, such as HEK293 cells or Cos cells. In
some cases, investigators have used chimeras, i.e. the ex-
tracellular part of another receptor, e.g. the epidermal
growth factor (EGF) receptor fused to the intracellular
part of c-Kit. Therefore, it is difficult to directly compare
the results from different investigators. Discrepancies in
the literature will be discussed in this review. Regarding
tyrosine residues in c-Kit, the numbering in this review
refers to the amino acid sequence of human c-Kit, and in
cases when experiments have been performed on murine
c-Kit, the numbering system used is for simplicity that of
the human c-Kit sequence.

Activation of c-Kit through ligand-induced dimeriza-
tion

Binding of SCF to c-Kit results in dimerization of the re-
ceptors followed by activation of its intrinsic tyrosine ki-
nase activity [29]. It is thought that dimerization is driven
by the simultaneous binding of a dimeric SCF molecule to
two receptor monomers [30, 31]. The activated receptor
becomes autophosphorylated on a number of tyrosine
residues (see fig. 1), mainly located outside the kinase do-
main, which serve as docking sites for signal transduction
molecules containing Src homology 2 (SH2) or phospho-
tyrosine binding (PTB) domains (for review, see [32]).
The c-Kit ligand SCF is expressed as a glycosylated
transmembrane protein. Alternative splicing leads to two
isoforms of SCF that differ in the absence or presence of
a particular proteolytic cleavage site [33]. The isoform
containing the cleavage site undergoes proteolysis and
becomes soluble upon release from the plasma mem-
brane, whereas the isoform lacking the cleavage site re-
mains cell associated. Interestingly, the two isoforms



have different abilities to transmit signals. Stimulation
with the soluble isoform leads to rapid and transient acti-
vation and autophosphorylation of c-Kit, as well as fast
degradation, whereas stimulation with the membrane-as-
sociated isoform leads to more sustained activation [34].
Differences also exist in signaling downstream of c-Kit.
The membrane-bound ligand induced a more persistent
activation of Erk1/2 and p38 mitogen-activated protein
kinase (MAPK), as compared to the soluble ligand [35].
The differences in signaling might in part arise from the
fact that membrane anchoring of the ligand might prevent
internalization of the receptor-ligand complex. Using im-
mobilized agonistic anti-Kit monoclonal antibodies to in-
duce receptor dimerization in the absence of internaliza-
tion, Kurosawa et al. could mimic the action of mem-
brane-bound SCF [21].

Internalization and degradation of c-Kit

Ligand-induced downregulation of RTKs is an important
phenomenon in the normal physiology of cell surface re-

ceptors. RTKs become ubiquitinated upon ligand stimu-
lation, including c-Kit [29]. In the case of RTKs, mo-
noubiqutination rather than polyubiqutination takes place
(reviewed in [36]), targeting the receptors for internaliza-
tion and degradation in the lysosomes. This is in contrast
to polyubiquitination of cytosolic proteins, which targets
them for degradation in the proteasomes. 
Important players in the ubiquitination machinery are the
ubiquitin E3 ligases, which covalently attach ubiquitin
moieties to target proteins. In receptor tyrosine kinase
(RTK) signaling, one of the important E3 ligases is the
adapter protein Cbl, which binds to activated receptors
and other tyrosine-phosphorylated proteins via its SH2
domain [37]. Cbl is activated through SFK-dependent
phosphorylation [38]. Cbl is able to bind to activated c-Kit
through the adapter proteins CrkL [39, 40] and APS [41]
and is phosphorylated in response to SCF stimulation.
It is known from several studies that internalization of c-
Kit is dependent on the activity of SFKs [15, 42, 43]. It is
likely that this is due to SFK-dependent activation of Cbl
and subsequent ubiquitination, but this remains to be
shown. 

Negative regulation of c-Kit signaling

Protein kinase C (PKC) is a family of serine/threonine ki-
nases that are important regulators of several RTKs, in-
cluding c-Kit [44]. Stimulation of c-Kit with soluble SCF
results in phosphoinositide 3¢-kinase (PI3-kinase)-depen-
dent activation of phospholipase D [45], leading to re-
lease of phosphatidic acid, which can be dephosphory-
lated to yield diacylglycerol (DAG), an activator of PKC.
The tyrosine kinase activity of c-Kit can be modulated
through phosphorylation by PKC. Downmodulation of c-
Kit activity by PKC occurs through dual mechanisms.
Activation of PKC phosphorylates S741 and S746 in the
kinase insert region of c-Kit, which leads to inhibition of
kinase activity [44, 46]. Conversely, treatment of cells
with the PKC inhibitor calphostin C resulted in enhanced
c-Kit kinase activity and, furthermore, selectively in-
creased activation of PI3-kinase [44]. Mutation of S741
and S746 to alanine residues resulted in a gain of function
and markedly increased c-Kit tyrosine kinase activity
[47]. In addition, treatment of cells with phorbol myris-
tate acetate (PMA), an activator of PKC, results in prote-
olytic release of the ligand-binding domain of c-Kit,
which leads to decreased responsiveness to SCF stimula-
tion [48, 49].
The suppressors of cytokine signaling (SOCS) are a fam-
ily of proteins that were originally cloned based on their
ability to suppress cytokine signaling (for review, see
[50]). They have a central SH2 domain flanked by an N-
terminal domain of variable length and a C-terminal do-
main of 40 amino acids denoted the SOCS box. In a yeast
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Figure 1. Signal transduction molecules binding to the activated c-
Kit receptor. Upon ligand binding, c-Kit dimerizes, and its intrinsic
tyrosine kinase activity is activated, leading to phosphorylation of
key residues. These residues constitute high-affinity binding sites
for signal transduction molecules. The numbers refer to tyrosine
residues phosphorylated in c-Kit, and the corresponding signal
transduction molecule is depicted.
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two-hybrid screen using c-Kit as bait, SOCS-1 was iden-
tified as an interactor with c-Kit [51]. Its expression is in-
duced upon stimulation of mast cells with SCF, and it as-
sociates with c-Kit via its SH2 domain. In contrast to its
function in cytokine signaling, SOCS-1 selectively sup-
pressed c-Kit-stimulated mitogenesis, while not affecting
survival signals. The mechanism does not involve inacti-
vation of the tyrosine kinase activity of c-Kit, but through
binding of Grb2 via its SH3 domain to SOCS-1, which in
turn binds to Vav [51]. Interestingly, targeted deletion of
SOCS-1 did not lead to enhanced c-Kit signaling in bone
marrow-derived mast cells, as one might have expected,
but rather a reduced proliferative response to SCF stimu-
lation [52]. Furthermore, deletion of SOCS-1 led to in-
creased levels of proteases, leading to degradation of sig-
nal transduction molecules.
The protein tyrosine phosphatase SHP-1 interacts with
Y570 of c-Kit and negatively regulates c-Kit signaling
[53, 54]. SHP-1 consists of two SH2 domains and a car-
boxy-terminal protein tyrosine phosphatase domain. The
motheaten (me) mice express a loss-of-function mutation
in SHP-1 and show a hyperproliferative phenotype of
their hematopoietic progenitor cells [55]. However, loss
of SHP-1 function did not affect SCF-induced prolifera-
tion of bone marrow-derived mast cells, suggesting that
the role of SHP-1 might to some extent be cell-type spe-
cific [56].

The Ras/Erk pathway

Numerous studies have implicated the critical importance
of the Ras/Erk pathway in cell division and survival (for
review, see [57]). Ras is a small G-protein that can oscil-
late between an active GTP-bound form and an inactive
GDP-bound form. Although Ras can activate a number of
signal transduction molecules such as Rac or PI3-kinase
[58, 59], its role in the Ras/Erk cascade is the most well
characterized. RTKs activate Ras through association
with Sos, a guanine nucleotide exchange factor that facil-
itates exchange of GDP for GTP, leading to activation of
Ras. Sos exists in the cell in a preformed complex with
the adapter protein Grb2, which in turn associates via its
SH2 domain to phosphorylated tyrosine residues within
the consensus sequence p-YXN. These tyrosine residues
exist either in the receptor or in downstream signal trans-
duction molecules such as the protein tyrosine phos-
phatase SHP-2 or the adapter protein ShcA [60–62].
Thus, the Grb2-Sos complex is recruited to the vicinity of
the plasma membrane, where it can act on Ras. Activated
Ras has the ability to interact with the serine/threonine ki-
nase Raf-1, leading to its activation. The targets for Raf-
1 kinase activity are the dual-specificity kinases Mek1
and Mek2 [63], which are activated by phosphorylation.
The serine/threonine kinases Erk1 and Erk2 are activated

through phosphorylation by Mek1/2 [64]. Activated Erks
dimerize and are translocated to the nucleus [65], where
transcription factors are phosphorylated whereby their
activities are regulated, influencing gene transcription
[66].
A number of studies have demonstrated the ability of
SCF to activate the Ras-Erk pathway. The adapter protein
Grb2 can directly associate with phosphorylated Y703
and Y936 in c-Kit [67]. In addition, Grb2 can associate
with SHP-2 or ShcA following SCF stimulation [68, 69].
Furthermore, the adaptor protein Gab2 can link to the
Ras/Erk pathway through association with SHP-2 [70].
Several studies have indicated an important role for SCF-
induced activation of SFKs in activation of the Ras/Erk
cascade [71–73]. In contrast, others have shown no effect
for SFK inhibition on the activity of Erk [74]. Indepen-
dence of PI3-kinase for activation of Erk in mast cells
was also demonstrated. However, under certain condi-
tions activation of Erk has been implicated to be depen-
dent on the activity of PI3-kinase. Recently, Wandzioch et
al. [75] showed that inhibition of PI3-kinase with the
pharmacological agent LY294002 effectively inhibited
Erk phosphorylation in a hematopoietic progenitor cell
line. This is similar to findings by others showing that it
was possible to inhibit PDGF-induced Erk activation by
addition of a PI3-kinase inhibitor under conditions of low
receptor expression, whereas cells expressing high levels
of PDGF receptors were unaffected [76]. 

PI3-kinase

PI3-kinase is a class of lipid kinases that phosphorylate
the 3¢ hydroxyl group of phosphoinositides, phos-
phatidylinositol-4,5-bisphosphate (PIP2) being the physi-
ologically relevant substrate (for review, see [77]). The re-
sulting product, phosphatidylinositol-3,4,5-trisphosphate
(PIP3), is able to physically associate with proteins con-
taining a pleckstrin homology (PH) domain, leading to
their recruitment to plasma membrane where they can be
activated.
Most published work on PI3-kinase is focused on the
classical class I PI3-kinases. The regulatory p85 subunit
contains two SH2 domains by which it binds to target pro-
teins, whereby conformational changes are induced and
PI3-kinase enzyme is activated [78]. The p110 subunit
contains enzymatic activity to phosphorylate phospho-
inositides. The two subunits exist in the cell as a pre-
formed complex. Interestingly, there is a stoichiometric
excess of the p85 subunit within the cell [79], suggesting
other functions of p85. It is well known that p85 also has
the ability to associate with the adapter proteins Cbl,
CrkII and CrkL, respectively [39, 80, 81]. 
Activation of PI3-kinase by c-Kit has been linked to mito-
genesis, differentiation, survival, adhesion, secretion and
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actin cytoskeletal reorganization [47, 74, 82–84]. In c-Kit,
Y721 has been found to directly interact with PI3-kinase
[82]. c-Kit promotes survival via PI3-kinase-dependent ac-
tivation of Akt and phosphorylation of Bad, a pro-apoptotic
molecule, at S136 in vivo. Furthermore, mutation of S741
and S746, the two serine sites involved in negative regula-
tion by PKC, led to increased mitogenic response and in-
creased activation of PI3-kinase, as well as enhanced Akt
activation, Bad phosphorylation and survival [47]. An al-
ternative pathway for c-Kit-mediated survival is through
Akt-mediated phosphorylation and inactivation of the
forkhead transcription factor FoxO3a [85].
A number of studies have implicated the importance of
PI3-kinase activity in transformation through mutated c-
Kit. Using immortalized murine progenitor cells trans-
duced with the Y721F mutant D816V c-Kit, Chian et al.
[86] showed that transformation by this constitutively ac-
tive form of c-Kit is dependent on PI3-kinase. In another
study, mutants with the cytoplasmic tyrosines of c-Kit in-
dividually mutated to phenylalanine residues were used to
assess their roles in D814V transformation [87]. Two mu-
tants severely impaired receptor activation, Y719F (in
murine c-Kit) and a deletion mutant in which the two most
distal tyrosines in the carboxy-terminal tail were mutated,
including Tyr936 previously shown to bind to Grb2, Grb7
and APS [41, 67]. Interestingly, these mutants showed no
effect on normal ligand-induced activation of c-Kit. 
The physiological role of c-Kit-mediated activation of
PI3-kinase was demonstrated in two studies using trans-
genic mice expressing c-Kit with a Y719F mutation (cor-
responding to Y721F in human c-Kit). Blume-Jensen et
al. [88] showed that c-Kit-induced activation of PI3-ki-
nase was essential for male fertility, while in another
study Kissel et al. [89] also demonstrated an effect on fe-
male fertility. Thus, abrogated c-Kit-mediated PI3-kinase
signaling may be compensated for in a number of biolog-
ical processes, but appears to be critical in spermatogen-
esis and oogenesis. These findings together suggest that
Y719 solely serves as the docking site for PI3-kinase and
for no other signal transduction molecule. This, however,
remains to be proven. One of the PI3-kinase association
sites present in the closely related PDGF b-receptor Y751
is also known to bind to the adapter protein Ncka [90].
Thus, some of the phenotypes found using this kind of ap-
proach might be due to additional, hitherto unknown in-
teractions.
Bone marrow-derived mast cells from mice with a tar-
geted deletion of the p85a subunit of PI3-kinase demon-
strated a dramatically reduced SCF-mediated prolifera-
tive response, compared to wild-type cells, further em-
phasizing the role of PI3-kinase in c-Kit signaling [91].
This effect paralleled a reduction of SCF-induced activa-
tion of JNK in p85a-deficient mast cells. Interestingly,
SCF-stimulated activation of Akt was only partially im-
paired in p85a-deficient bone marrow-derived mast

cells, and no effect on c-Kit mediated survival was ob-
served. Therefore, additional signal transduction path-
ways may contribute to c-Kit-mediated survival. In addi-
tion, SCF-mediated chemotaxis has also been demon-
strated to be dependent on p85a [92].
It should be noted that discrepancies do exist in results
using p85a-deficient cells and Y721F mutant c-Kit. Per-
haps Y721 is able to dock to signal transduction mole-
cules other than PI3-kinase. Furthermore, p85a is known
to bind to proteins other than the p110 subunit of PI3-ki-
nase. Further studies are needed to precisely define the
contribution of PI3-kinase in SCF-mediated signaling.
Apart from the classical type I forms of PI3-kinase, the
type II isoform PI3KC2b was shown to physically asso-
ciate with activated c-Kit and mediate part of the SCF-de-
pendent activation of Akt in small lung carcinoma cells
[93]. Interestingly, PI3KC2b association with c-Kit was
ligand independent and constitutive. However, ligand
stimulation of c-Kit led to tyrosine phosphorylation of
PI3KC2b. The site of interaction with c-Kit is not known,
although given that association seems constitutive and
that other receptors previously shown to interact with the
classical isoforms of PI3-kinase did not interact with
PI3KC2b, it appears that the classical PI3-kinase associ-
ation site is not involved.

PLC-gg

Phospholipase C-g (PLCg) exists as two isoforms, PLC-
g1 and PLCg2. They both consist of two SH2 domains,
one SH3 domain, one PH domain and a catalytic domain.
While PLCg1 is ubiquitously expressed, PLC-g2 is
mainly expressed in the hematopoietic system (for re-
view, see [94]). PLC hydrolyses the phosphoinositide
PIP2, thereby generating the second messengers DAG and
inositol-1,4,5-trisphosphate (IP3). DAG is an activator of
the classical and novel forms of PKC, while IP3 binds to
specific receptors present on the endoplasmic reticulum,
triggering release of Ca2+ from internal stores. The intra-
cellular concentration of free Ca2+ regulates a number of
cellular processes (for review see [95]). 
Although some studies have demonstrated association
with and activation of PLCg by c-Kit, others have failed to
do so. It has been claimed that Y730 is the site of associa-
tion of PLC-g1. Herbst et al. [96] overexpressed EGFR-c-
Kit chimeras together with PLC-g1 in HEK293 cells and
found tyrosine phosphorylation of PLC-g1, although
weaker than that seen with the EGF receptor. In a later
study, the same authors saw no association between PLC-
g1 and an EGFR-c-Kit chimera unless they overexpressed
PLC-g1 [97]. However, those studies were performed us-
ing chimeric receptors with the extracellular domain of
the EGF receptor fused to the intracellular part of c-Kit.
Furthermore, association was only seen when the receptor
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was overexpressed together with overexpressed PLC-g1.
In a more recent study, Gommerman et al. [98] studied the
differential stimulation of various c-Kit mutants by mem-
brane-bound and soluble SCF, respectively, using retrovi-
rally transduced 32D cells. Using soluble SCF, a weak
SCF-stimulated tyrosine phosphorylation of PLC-g1 was
shown in wild-type murine c-Kit-expressing cells, but in
cells expressing the Y728F mutant (corresponding to
Y730 in human c-Kit), no phosphorylation of PLC-g1 was
seen. Furthermore, cells expressing the Y728F mutant c-
Kit did not respond with calcium mobilization following
treatment with SCF. Interestingly, PLC-g1 phosphoryla-
tion was much stronger in bone marrow-derived mast cells
than in 32D infectants. In contrast, Koike et al. [99] failed
to detect c-Kit-mediated activation of PLC-g, but were
able to detect SCF-dependent activation of phospholipase
D. These data were confirmed by Kozawa et al. [45], who
also were able to inhibit SCF-stimulated PLD activity
with the PI3-kinase inhibitor LY294002. Also studying
bone marrow mast cells, Huber et al. detected a robust and
sustained SCF-stimulated tyrosine phosphorylation of
PLC-g2 [100]. Likewise, Triselmann et al. [101] showed
that stimulation of mast cells by membrane-bound, but not
soluble SCF, was dependent on PLC-g activation. They
also demonstrated ligand-induced tyrosine phosphoryla-
tion of PLC-g2. Other studies have shown that activation
of PLC-g by c-Kit might be involved in SCF-mediated
protection against apoptosis induced by chemotherapy
and radiation [102, 103].
It is possible that some of the discrepancy in the findings
as to whether PLC-g is activated or not might arise from
different expression levels of the two isoforms of PLC-g
in different cell types, with the cell types expressing PLC-
g2 showing stronger activation of PLC. Another possible
explanation for differences in the data on activation of
PLC-g1 might be the differential signaling abilities of al-
ternative splice forms of c-Kit. It is known that the two al-
ternative splice forms denoted GNNK+ and GNNK– do
signal at quantitatively and qualitatively different levels
[14, 15]. Thus, expression of various splice forms of c-Kit
might influence the outcome of studies on PLC-g activa-
tion. Given the fact that a direct physical interaction be-
tween c-Kit and PLC-g isoforms has not been demon-
strated, except in cells overexpressing the receptor and
PLC-g1, it is possible that activation of PLC-g might be a
result of activation of other tyrosine kinases downstream
of c-Kit. This might not necessarily require a direct phys-
ical association between PLC-g and c-Kit. 

The Src family of tyrosine kinases

The SFK family of tyrosine kinases is named after its pro-
totypic family member c-Src, the cellular homolog of the
transforming protein of Rous sarcoma virus, v-Src. Some

members, such as Src, Yes and Fyn, are ubiquitously ex-
pressed, while others, such as Lck, Hck, Fgr, Lyn and Blk,
have a more tissue-restricted expression, mainly in
hematopoietic cell types (reviewed in [104]). They con-
sist of an N-terminal sequence, which directs myristoyla-
tion, and in same cases palmitoylation, which serves to
anchor the kinases to the plasma membrane. They also
contain an SH3 domain, an SH2 domain and a tyrosine
kinase domain. They have been implicated in a number of
cellular functions, including adhesion, chemotaxis, sur-
vival, proliferation and protein trafficking.
Binding of SCF to c-Kit leads to a rapid increase in SFK
kinase activity [105, 106]. A number of investigators have
shown that SFKs associate primarily with phosphory-
lated Tyr568, while Tyr570 contributes to the overall
affinity of binding by acting as an acidic determinant [72,
74, 107]. SCF-induced chemotaxis of Mo7 cells was de-
pendent on SFK activity [42]. In another study, overex-
pression of a dominant negative form of Lyn in either pri-
mary hematopoietic progenitor cells or bone marrow-de-
rived mast cells led to inhibition of both SCF-mediated
proliferation and chemotaxis [108]. In Mo7e cells, acti-
vation of the SFK Lyn was demonstrated to occur during
the late G1 phase of SCF-stimulated cell cycle progres-
sion [109]. Using an approach where 32D cells were
transfected with chimeric c-Kit containing the extracellu-
lar domain of the M-CSF receptor, and by mutating seven
tyrosine residues of the intracellular part of c-Kit, Hong
et al. demonstrated a complete loss of mitogenic response
of 32D cells [110]. However, by adding back Y568 and
Y570 to this mutant, the mitogenic response was restored,
as well as survival and migration. Furthermore, restora-
tion of the Src binding sites also led to restored activation
of the Ras/Erk pathway. This is in agreement with previ-
ous findings that SFKs play an important role in phos-
phorylating ShcA, thereby recruiting the Grb2-Sos com-
plex, leading to activation of Ras [71, 72]. In addition,
SCF-induced activation of other signal transduction mol-
ecules such as Rac and JNK was shown to be restored by
adding back Y568 and Y570.
The function of SFKs in a more physiological context
was addressed by Agosti et al. [111], who generated
transgenic mice carrying c-Kit with a Y568F mutation.
They found that mutation of Y568, the primary binding
site of SFKs in c-Kit, led to a block in pro T cell and pro
B cell development, in contrast to the Y721F mutant (af-
fecting PI3-kinase activation), which had no effect on
hematopoiesis. These data suggest that SFKs mediate a
critical signal for lymphocyte development. However,
one of the difficulties in interpreting these data lies in the
probability that additional signal transduction molecules
apart from SFKs might be involved. For example, the pro-
tein tyrosine phosphatase SHP-2 [53], the tyrosine kinase
CHK [112] and the adaptor protein APS [41] have also
been shown to bind to phosphorylated Y568. 
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The JAK/STAT pathway

The Janus kinases (JAKs) are cytoplasmic tyrosine ki-
nases that are activated through ligand stimulation of cy-
tokine receptors or RTKs. Downstream of JAKs are the
signal transducers and activators of transcription
(STATs), which are phosphorylated by JAKs. STAT pro-
teins are a class of transcription factors with DNA bind-
ing domains, an SH2 domain and a carboxy-terminal
transactivating domain. Upon tyrosine phosphorylation,
STATs dimerize through phosphotyrosine interaction
within their SH2 domains, and the dimerized STATs
translocate to the nucleus, where they regulate expression
of responsive genes (for review, see [113]). The JAK-
STAT pathway is activated following SCF stimulation. c-
Kit stimulates rapid and transient tyrosine phosphoryla-
tion of JAK2 [114]. JAK2 was found to be constitutively
associated with c-Kit, with increased association after
ligand stimulation of c-Kit [115]. Furthermore, treatment
of cells with JAK2 antisense oligonucleotides resulted in
a marked decrease in SCF-induced proliferation, suggest-
ing a role for JAK2 in c-Kit-mediated signaling. In addi-
tion, SCF-induced growth of fetal liver cells was shown
to be reduced in mice with a targeted deletion of JAK2
[116]. Furthermore, JAK2 was also required for differen-
tiation of the Kit+ progenitor cells into mast cells.
Activation of c-Kit leads to physical association with and
activation of STAT1a, STAT3, STAT5A and STAT5B
[26, 117–119]. It has been shown that STAT3 activation
is required for the constitutively active D816H mutant of
c-Kit to be tumorigenic [26].
However, as is the case with the activation of PLC-g,
other investigators have failed to detect activation of the
JAK/STAT pathway by c-Kit [120–122]. Reasons for this
might be due to cell type-specific effects or to the exper-
imental setup.

Other tyrosine kinases: Tec, CHK, Fer and Fes

Tec belongs to a family of tyrosine kinases that also in-
cludes the Bruton tyrosine kinase (Btk), Bmx, Itsk/Tsk
and Rlk/Txk (for review, see [123]). They each contain a
PH domain and a Tec homology (TH) domain in the
amino-terminus followed by SH3, SH2 and tyrosine ki-
nase domains. In contrast to the SFKs, they lack a mem-
brane-targeting myristoylation site, but are recruited to
the plasma membrane through the PH domain interacting
with PIP3. Activation of Tec family kinases is thought to
be mediated by members of the Src family.
Tec has been shown to become phosphorylated  on tyro-
sine and activated upon stimulation of c-Kit with SCF
[124]. It was later shown that Tec forms multiprotein
complexes with Dok-1 and Lyn [125, 126]. Phosphoryla-
tion of Tec and Dok1 was dependent on recruitment to the

plasma membrane through activation of PI3-kinase
[125]. Both Lyn and Tec were capable of phosphorylating
Dok-1, but using cells derived from animals with a tar-
geted deletion of Lyn [126] showed that Lyn was required
for SCF-dependent phosphorylation of Dok-1. 
CHK (for Csk homologous kinase, also known as
MATK) shows ~50% sequence similarity with Csk and
phosphorylates SFKs. Similarly to SFKs, CHK were
demonstrated to associate to the phosphorylated jux-
tamembrane region of ligand-stimulated c-Kit, specifi-
cally to Y568 [112].
Fer and Fes are structurally related cytoplasmic tyrosine
kinases. They both contain an SH2 domain immediately
upstream of the kinase domain. Following SCF stimula-
tion Fer associates with c-Kit and becomes phosphory-
lated on tyrosine residues  [127]. Using mast cells derived
from mice with a kinase-inactivating mutation of Fer,
Craig and Greer [128] found a requirement for Fer kinase
activity for sustained p38 kinase activation and maximal
chemotactic response to SCF. Fes was found to bind to c-
Kit [129], although its role in c-Kit signaling remains to
be shown. 

Adaptor proteins

Adapter proteins are proteins with several domains that
specify protein-protein interactions, and which thereby
enables them to interact with several proteins simultane-
ously. The ability of linking proteins together through
specific and many times regulated protein-protein inter-
actions enables signaling to be spatially and sequentially
regulated (for review, see [130]). 
Grb2 was originally identified as a protein interacting
with the phosphorylated EGF receptor [61] and found to
mediate activation of the Ras/Erk pathway by RTKs.
Grb2 is a ubiquitously expressed protein containing one
SH2 domain and two SH3 domains. Tyrosine phosphory-
lated c-Kit has been shown to associate with Grb2 (see
also above).
The adapter protein Gads (also denoted Mona, Grap2,
GrpL or Grf40) is closely related to Grb2 and expressed
in hematopoietic cells (for review, see [131]) and has
been shown to interact with c-Kit in a manner similar to
Grb2 [132]. Another member of the same family of
adapter proteins with a very similar structure, Grap, also
interacts with c-Kit [133].
ShcA is a ubiquitously expressed adapter protein that
contains one SH2 domain and a PTB domain that both
enable ShcA to interact with phosphorylated proteins (for
review, see [134]). Phosphorylation of ShcA by RTKs, di-
rectly or indirectly via SFKs, leads to creation of high-
affinity binding sites for Grb2, leading to activation of the
Ras/Erk pathway. In vitro data suggest that ShcA inter-
acts with the juxtamembrane domain of c-Kit [107].
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The Grb7 family of adaptor proteins consists of Grb7,
Grb10 and Grb14, which each exist in several splice form
variants (for review, see [135]). Grb7 contains an SH2
and a so-called GM region (for Grb and Mig), which in-
cludes a PH domain and shows sequence homology with
the Caenorhabditis elegans protein Mig-10, which has
been implicated in embryonic migration. Grb7 interacts
with activated c-Kit through Y936 in the carboxy-termi-
nal tail of the receptor [67]. However, the role of Grb7 in
c-Kit signaling remains to be elucidated. Grb10 was iden-
tified in a yeast two-hybrid screen using the constitutively
active mutant D816V of c-Kit as bait [136]. The interac-
tion between Grb10 and c-Kit is mediated through its
SH2 domain, while the PH domain mediates interaction
with the serine/threonine kinase Akt. It was further
demonstrated that Grb10 and c-Kit are able to activate
Akt in a synergistic manner. 
The adaptor protein Lnk, together with APS and SH2-B,
belongs to a family of closely related adapter proteins. All
three proteins share common features in that they contain
a conserved amino-terminal domain that includes a pro-
line-rich stretch, a PH domain and an SH2 domain. They
all contain a conserved tyrosine residue in their carboxy-
termini that is presumed to be a phosphorylation site
[137]. Using transgenic mice lacking the expression of
Lnk, it was shown that B cell precursor cells were hyper-
sensitive to SCF stimulation [138], leading to propor-
tional accumulation of B cell precursors in the bone mar-
row and B cells in the spleen of transgenic mice. Thus,
Lnk seems to have a negative regulatory role in B cell
production. 
APS was originally identified in a yeast two-hybrid
screen using c-Kit as bait [139]. When APS is phospho-
rylated in its carboxy-terminal tail, it is able to physically
associate with c-Cbl [140, 141]. Being a ubiquitin E3-lig-
ase, c-Cbl is able to covalently link ubiquitin to activated
RTKs, leading to their internalization and degradation.
The primary association sites for APS in c-Kit have been
shown to be Y568 and Y936 [41]. Mutation of both
Tyr568 and Tyr936 was necessary to completely block
binding of APS to c-Kit. Recently, it was shown that APS
exists as a dimer [142], which might explain why both
sites are needed for full binding of APS to c-Kit. Interest-
ingly, both Y568 and Y936 are missing in the viral coun-
terpart of c-Kit [143]. Thus, it has been speculated that
loss of APS binding in v-Kit could possibly lead to re-
duced ubiquitination and prolonged receptor signaling,
which could possibly contribute to transformation. A
number of transforming mutants of RTKs have been
shown to lack association sites for Cbl, leading to reduced
ubiqutination and stabilization of the receptors (reviewed
in [144]). 
However, the physiology of mice with a targeted deletion
of APS does not support a major role for APS in c-Kit sig-
naling. The effects are mainly related to the immune sys-

tem [145], although mast cells derived from APS knock-
out animals show a markedly augmented degranulation in
response to c-Kit stimulation, as well as lower levels of F-
actin [146]. In contrast, targeted deletion of either Lnk or
SH2-B did not lead to any marked effect on mast cell be-
havior.
The Crk family of adapter proteins consists of one SH2
domain, as well as one or two SH3 domains. The family
consists of four members: CrkI and CrkII (alternative
splice forms of the same gene), CrkL (reviewed by [147])
and the recently discovered CrkIII [148]. SCF stimulation
of c-Kit leads to stimulation of CrkL [39], which indi-
rectly associates with c-Kit through the p85 subunit of
PI3-kinase. In addition, CrkL mediates interaction with
Cbl, which likely contributes to c-Kit ubiquitination and
degradation. The closely related protein CrkII was also
shown to be phosphorylated in response to SCF stimula-
tion and interacted with c-Kit indirectly via the p85 sub-
unit of PI3-kinase [81]. This interaction was dependent
on phosphorylation of Y900 in the second part of the ki-
nase domain. Y900 is not an autophosphorylation site,
but is phosphorylated through the action of SFKs. 
Dok-1 is an adapter protein of 62 kDa first identified as a
tyrosine-phosphorylated protein associated with p120-
RasGAP in fibroblasts transfected with v-Src [149]. It
contains a PH domain and a phosphotyrosine binding
(PTB) domain. Cells from Dok-1 knockout animals hy-
perproliferate in response to a number of growth factors
and cytokines, suggesting a role of Dok-1 as a negative
regulator of cell proliferation [150]. Dok-1 was found to
associate with activated c-Kit in chronic myelogenous
leukemia progenitor cells [151]. 
The Gab proteins are a family of scaffolding adaptors
with similar overall structural organization (reviewed in
[152]), containing an N-terminal PH domain, proline-
rich motifs that can interact with SH3 domains and mul-
tiple tyrosine phosphorylation sites that can serve as
docking sites for SH2 domains. Both Gab-1 and Gab-2
are phosphorylated in response to SCF-stimulation [153].
While Gab-1 does not seem to be essential for c-Kit sig-
naling, Gab-2 is required for mast cell development and
c-Kit signaling [154]. Bone marrow mast cells derived
from Gab-2-deficient mice grew poorly in response to
SCF, and both Erk and Akt activation were impaired.

Protein tyrosine phosphatases

The two closely related protein tyrosine phosphatases
(PTPs) SHP-1 and SHP-2 constitute a family of proteins
consisting of two amino-terminal SH2 domains, a PTP
domain and a carboxy-terminal tail (reviewed in [155]). A
number of SHP-binding proteins have been reported, in-
cluding activated RTKs and cytokine receptors, as well as
scaffolding adaptors, such as Gab proteins. Activation of
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SHPs occurs through binding of the SH2 domains to ty-
rosine-phosphorylated peptides, in particular biphospho-
rylated, that open up the phosphatase structure. SHP-1
associates with phosphorylated Y570 in c-Kit [53] and is
involved in negative regulation of c-Kit signaling (see
also above). In contrast, SHP-2 is, despite the fact that it
is a phosphatase, a positive regulator of signaling. SHP-2
physically interacts with SCF-stimulated c-Kit and be-
comes phosphorylated on tyrosine residues [68]. The site
of interaction was shown to be Y568 in the juxtamem-
brane region of c-Kit [53], which also constitutes the
docking site for a number of other signal transduction
molecules, such as SFKs, CHK and APS. In most RTK
signaling, SHP-2 activation is required for full activation
of the Ras/Erk pathway, e.g. the PDGF b-receptor [156].
SHP-2 also plays an important role in mediating embry-
onic stem cell differentiation and hematopoiesis [157].
PTP-RO is a PTP lacking SH2 domains, but is still able
to associate with the c-Kit receptor [158]. Furthermore,
PTP-RO becomes phosphorylated on tyrosine residues
after SCF stimulation of cells. By use of antisense
oligonucleotides, the function of PTP-RO could be inhib-
ited, which led to significantly inhibited proliferation of
Mo7e cells [158].

Transcription factors

A number of genes are induced upon SCF stimulation of
cells. One of these is Slug, a member of the Snail family
of zinc finger transcription factors. Slug-deficient mice
show pigment deficiency, gonadal defects and impair-
ment of hematopoiesis, very much reminiscent of the
phenotype of loss-of-function mutations in c-Kit [159]. It
was shown that despite the expression of c-Kit, cells from
Slug knockout animals were defective in SCF-induced
migration, suggesting a role for Slug downstream of c-
Kit. It was recently shown that Slug function in c-Kit me-
diated radioprotection [160].
The Mitf protein is a member of the MYC superfamily 
of basic helix-loop-helix leucine zipper (bHLHZip) tran-
scription factors [161–163]  and is closely related to three
other bHLHZip transcription factors, Tfe3, Tfeb and
TfeC. The phenotype of Mitf mutant mice shows a strik-
ing similarity to that of mice with loss-of-function muta-
tions of c-Kit or its ligand (spotted fur color, mast cell de-
ficiency; reviewed in [163], suggesting a functional link
between the Mitf transcription factor and c-Kit and its lig-
and. Recent in vitro experiments indicate that the activity
of the Mitf transcription factor is regulated by signaling
through the c-Kit receptor tyrosine kinase. This cell sig-
naling ultimately results in effects on the activation po-
tential and/or stability of the Mitf protein [164–166].
SCF stimulation of c-Kit activates Erk2 and results in
phosphorylation of S73 of Mitf. Co-transfection experi-

ments have shown a significant difference in the tran-
scriptional activation potential of a Mitf protein phospho-
rylated at S73 and a version containing the unphosphory-
latable S73A mutation. Furthermore, Price et al. [167]
have shown that only the phosphorylated version of Mitf
can interact with the p300 co-activator protein. A second
phosphorylation event has been shown to link the c-Kit
receptor and Mitf. This is the phosphorylation of amino
acid S409 by the p90/Rsk kinase, which itself is activated
by Erk2, the same kinase that phosphorylates S73 of the
Mitf protein. This event has been postulated to affect the
stability of the protein such that Mitf protein phosphory-
lated on S409 is degraded more rapidly than a mutant
S409A Mitf protein. This was shown to be due to in-
creased ubiquitination of the protein and proteosome-de-
pendent degradation [165].

Conclusions

Since the discovery of SCF as the ligand of c-Kit almost
14 years ago, numerous studies have contributed to our
knowledge about the mechanism of action of c-Kit. A
multitude of signaling pathways are activated by SCF,
leading to diverse biological responses such as chemo-
taxis, proliferation, differentiation and survival. Using a
number of different cell systems, investigators have many
times found similar mechanisms of action of c-Kit, but
sometimes also differences. The exact reason for these
discrepancies is not fully understood. Some studies were
conducted on transfected fibroblasts that express a differ-
ent repertoire of signal transduction molecules than
hematopoietic cells, possibly giving rise to activation of
different signal transduction pathways. Also, the differen-
tiation state of hematopoietic cell lines is likely to influ-
ence the response elicited by SCF stimulation. Several
splice forms of c-Kit have been demonstrated to exist,
with sometimes different signaling capabilities, both
quantitatively and qualitatively. Very little is known about
how the expression of these different splice forms is reg-
ulated during development and differentiation. It is not
unlikely that differences in signaling shown in the litera-
ture might be due to differences in expression of various
splice forms of c-Kit in different cell types. Furthermore,
the qualitative differences in signaling of the membrane-
bound versus soluble form of SCF  have been demon-
strated in a number of studies. The use of transgenic ani-
mals with targeted deletions of individual signal trans-
duction molecules and the use of so-called knockin
methodology to introduce specific mutants of c-Kit in an-
imals have proven invaluable tools for our understanding
of c-Kit signaling. In order to be able to study c-Kit sig-
naling in hematopoietic development, more sensitive
methods for the study of signaling in individual cells will
be of utmost importance. Understanding of the mecha-
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nisms of synergy between SCF and various cytokines is
also a challenging field for future research. Increased
knowledge of molecular mechanisms of c-Kit signaling
in diseases such as cancer is paramount to the potential
development of targeted therapies aiming at inhibiting
specific c-Kit signaling pathways.
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